The Uniform Martin’s Conjecture for Many-one Degrees

نویسندگان

  • TAKAYUKI KIHARA
  • ANTONIO MONTALBÁN
چکیده

We study functions from reals to reals which are uniformly degree-invariant from Turing-equivalence to many-one equivalence, and compare them “on a cone.” We prove that they are in one-to-one correspondence with the Wadge degrees, which can be viewed as a refinement of the uniform Martin’s conjecture for uniformly invariant functions from Turingto Turing-equivalence. Our proof works in the general case of many-one degrees on Q and Wadge degrees of functions ω → Q for any better quasi ordering Q.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the Turing Jump Unique? Martin’s Conjecture, and Countable Borel Equivalence Relations

In 1936, Alan Turing wrote a remarkable paper giving a negative answer to Hilbert’s Entscheidungsproblem [29]. Restated with modern terminology and in its relativized form, Turing showed that given any infinite binary sequence x ∈ 2ω, the set x′ of Turing machines that halt relative to x is not computable from x. This function x 7→ x′ is now known as the Turing jump, and it has played a singula...

متن کامل

Martin’s Conjecture, Arithmetic Equivalence, and Countable Borel Equivalence Relations

There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin’s conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this p...

متن کامل

A Π1-uniformization Principle for Reals

We introduce a Π1-uniformization principle and establish its equivalence with the set-theoretic hypothesis (ω1) = ω1. This principle is then applied to derive the equivalence, to suitable set-theoretic hypotheses, of the existence of Π1 maximal chains and thin maximal antichains in the Turing degrees. We also use the Π1-uniformization principle to study Martin’s conjecture on cones of Turing de...

متن کامل

Uniformity, Universality, and Recursion Theory

We prove a number of results motivated by global questions of uniformity in recursion theory, and some longstanding open questions about universality of countable Borel equivalence relations. Our main technical tool is a class of games for constructing functions on free products of countable groups. These games show the existence of refinements of Martin’s ultrafilter on Turing invariant sets t...

متن کامل

Scattered Sentences Have Few Separable Randomizations

In the paper Randomizations of Scattered Sentences, Keisler showed that if Martin’s axiom for aleph one holds, then every scattered sentence has few separable randomizations, and asked whether the conclusion could be proved in ZFC alone. We show here that the answer is “yes”. It follows that the absolute Vaught conjecture holds if and only if every Lω1ω-sentence with few separable randomization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016